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ABSTRACT: The ability to infer human exposure to substances from drinking water using monitoring data helps determine
and/or refine potential risks associated with drinking water consumption. We describe a survey sampling approach and its
application to an atrazine groundwater monitoring study to adequately characterize upper exposure centiles and associated
confidence intervals with predetermined precision. Study design and data analysis included sampling frame definition, sample
stratification, sample size determination, allocation to strata, analysis weights, and weighted population estimates. Sampling frame
encompassed 15 840 groundwater community water systems (CWS) in 21 states throughout the U. S. Median, and 95th
percentile atrazine concentrations were 0.0022 and 0.024 ppb, respectively, for all CWS. Statistical estimates agreed with
historical monitoring results, suggesting that the study design was adequate and robust. This methodology makes no assumptions
regarding the occurrence distribution (e.g., lognormality); thus analyses based on the design-induced distribution provide the
most robust basis for making inferences from the sample to target population.
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■ INTRODUCTION

Regulatory assessments for potential drinking water exposure to
crop protection chemicals are primarily conducted using
computer models with a set of combined worst-case input
assumptions to generate high-end (protective) estimates of
exposure.1,2 The process follows a tiered scheme of increasing
complexity, beginning with a simple and lower tier model, and
followed by various higher tiers with inputs reflecting
agronomic, soil, and hydroclimatological conditions of
vulnerable geographical locations.2,3 Pursuit of refined and
realistic exposure estimates using monitoring data to reduce
model estimate uncertainty in pesticide regulation has been a
continuous endeavor.4−9 Recently, the Organization for
Economic Co-operation and Development (OECD) published
the guidance document for exposure assessment using
environmental monitoring,10 calling for consistency between
monitoring data-based and model-based exposure estimation.
Conceptually, field monitoring reflects “real-world” con-

ditions and should provide the most accurate exposure
information for risk assessment. Yet, monitoring data are
often less used in the regulatory assessment process due to
questions about how to place in context and interpret measured
exposure especially when there is lack of a scientifically sound
monitoring design associated with data generation. A robust
monitoring design requires a well-defined statistical population
and a sampling plan that supports population inference
requirements. It involves the use of a probability sampling
method so that measured data can be used to provide design-
based inference to address specific exposure questions for the
target population of monitoring such as community water
systems (CWS) that deliver drinking water derived entirely
from groundwater sources.
Water quality at CWS is regulated by the U.S. Environmental

Agency (EPA) under the Safe Drinking Water Act (SDWA).

There are 40 000+ groundwater CWS in the United States,
accounting for 78% of all CWS. Each CWS supplies drinking
water to at least 25 people or 15 service connections.11

Occurrence of potential pesticide residues in groundwater used
by these CWS is expected to vary geographically due to
pesticide use patterns (application timing, rate, and method),
agronomic practices, and combinations of local weather, soil,
and other hydrological characteristics. Monitoring to determine
exposure on each CWS nationally is operationally challenging
and costly. A robust sampling approach for water quality
monitoring design is needed to accurately estimate exposure in
an economically feasible manner. In this paper, we propose and
demonstrate the utility of a survey sampling design with a case
application to a groundwater CWS monitoring study for
atrazine (6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-
2,4-diamine) across 21 states. Atrazine has been widely used
over the last 50 years for weed control in corn, sorghum, and
sugar cane production.
Our specific objectives were to present: (1) a stratified

random sampling plan to support robust estimates of the
distribution of atrazine concentrations across the population of
CWS using groundwater as their source water; (2) a statistical
method to characterize the measured exposure distribution and
compare with historical SDWA data; and (3) recommendations
of factors needed in statistical survey planning and design for
monitoring raw and finished water samples collected from
CWS.
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■ MATERIALS AND METHODS
Planning a monitoring survey begins with a clear definition of the
target population to be sampled and the survey’s objectives. Once
defined, sample stratification, sample size and allocation, and analysis
weights can be developed based on the monitoring objectives and
prior knowledge of the target population (i.e., groundwater CWS),
such as the geography of pesticide use and existing relevant monitoring
data or relevant exposure modeling. In the following sections, an
atrazine groundwater CWS monitoring program conducted in 2000
was used as a case study to illustrate design steps and statistical
characterization of results.
Monitoring Goal and Data for Sampling Frame. For the

atrazine case monitoring study, the goal was to collect sufficient
finished drinking water samples so that the 95th percentile of the
concentration distribution could be statistically characterized for the
population of groundwater CWS in the major atrazine use regions.
Major use geography was determined by county level use data over
four years (1995−1998) from Doane’s market research survey, and
comprised counties in 21 states or 90% of the total atrazine used in the
U.S. (Figure 1): California, Delaware, Florida, Hawaii, Illinois, Indiana,
Iowa, Kansas, Kentucky, Louisiana, Maryland, Michigan, Minnesota,
Missouri, Nebraska, North Carolina, New York, Ohio, Pennsylvania,
Texas, and Wisconsin.
A comprehensive database was compiled from the state CWS

SDWA-compliance monitoring programs (1993−1998) to establish
the atrazine groundwater sampling frame. The SDWA requires CWS
to monitor for certain constituents including atrazine in finished
drinking water samples (i.e., after water plant treatment). Water
samples were typically taken quarterly in each year. The compiled
database is referred to as Population Linked Exposure (PLEX) which
links atrazine measurements, sampling date, source water types
(surface water, groundwater, mixed, etc.) and other auxiliary
information to the number of persons served at each CWS. On the
basis of these data, 15 840 CWS satisfied the following criteria: CWS
uses groundwater as sole drinking water source; groundwater source is
not influenced by surface water; groundwater is not purchased from

another source; and the CWS serves at least 25 persons as defined by
the U.S. EPA.11 These 15 840 CWS therefore became the sampling
frame for the survey of CWS using groundwater as their sole source of
drinking water.

Sample Stratification. An effective sampling design divides the
target population into distinct groups called strata so that
heterogeneity between strata can be the greatest while group members
within each stratum remain relatively homogeneous. Such stratification
improves sample representativeness and precision of population
quantities of interest to the extent that outcomes (e.g., atrazine
concentrations) are more homogeneous within strata. For the 15 840
groundwater CWS, two subpopulations (or domains) were first
stratified based on historically measured atrazine concentrations in
finished water: (1) nondetect domain (15 381 CWS) where atrazine
was never detected (1993−1998); and (2) detect domain (459 CWS)
where at least one sample with a detectable atrazine concentration
(1993−1998) was measured.

For clarity, we referred to detect and nondetect strata as “domains”,
while substrata within these domains are referred to as “strata” (Figure
2). Stratification variables were investigated within each domain by
evaluating the effectiveness of the resulting alternative stratification
schemes. For this purpose, the 1993−1997 data were used to form
strata and compared with percentages of atrazine measurements
detected in 1998 in these strata. The evaluation was based on 256
CWS with at least one detectable atrazine concentration measurement
(1993−1998) and had data (either detect or nondetect) for both 1998
and at least 1 year in 1993−1997. Within this context, the following
metrics were examined to determine their utility for stratifying the
sample:

(1) Number of persons served by each CWS.
(2) Average atrazine use intensity (1995−1997). This parameter

was computed by dividing the estimated total mass of atrazine applied
in a county in a given year by the total county area and averaging these
rates over years for which estimated product use data were available.
Total county area was used because the impact on the county’s
groundwater was expected to be related to the total amount applied

Figure 1. County level locations in the contiguous United States and number of community water systems (CWS) participated in the atrazine
groundwater monitoring case study.
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and the total groundwater volume, recharge and flow characteristics,
rather than the specific crop acreage to which the atrazine was applied.
(3) Average quarterly maxima of atrazine concentrations (1993−

1997). For each CWS in the SDWA database, the maximum
concentration of all measurements in each quarter was determined.
Then, the quarterly maxima were averaged. Using the maximum for
each quarter guarded against averaging downward the data for a
quarter in which there was one relatively high value followed by several
small, or nondetect.
(4) Median of the quarterly maxima of atrazine concentrations

(1993−1997).
(5) Maximum atrazine concentrations detected (1993−1997).
There are other factors such as climate (e.g., precipitation), soil, and

hydrogeological characteristics which may influence groundwater
quality on a local and/or regional scale and can be potentially used
as stratification variables for monitoring design. These factors however
were not considered in the current case study design because of the
availability of a large amount of historical SDWA groundwater
monitoring data (1993−1998) which would reflect the long-term
impact of the environmental conditions.
Limit of quantification (LOQ) for the state SDWA monitoring

programs used to determine atrazine levels in CWS water samples
varied from 0.1 to 3 ppb (μg L−1) (1993−1998). The varying LOQ
could impact statistical estimates of lower quantiles but was expected
to have little effect on estimates of higher quantiles of the atrazine
concentration distribution (e.g., the 95th percentile). In the case study
of atrazine monitoring (LOQ = 0.05 ppb as described later), statistical
estimates were made with two approaches, one using data of all
instrument-measurable concentrations and the other using 1/2 LOQ
substitution for nondetection. There are other statistical approaches to
deal with nondetections,12 but these were not attempted as the focus
of this study was on the higher centile distribution estimates.
Sample Size and Allocation. Sample size for monitoring depends

on the targeted percentile of the population distribution, desired
confidence level, and estimate precision. Sample size recommenda-
tions have been provided based on three methods: tolerance interval,
relative standard error (RSE), and skewness criterion.13 Minimum
effective sample sizes resulting from these approaches are provided in
Table 1, and details can be found in Mosquin et al.13 A brief summary
is provided below.
The tolerance interval approach finds the smallest sample size, n,

such that the probability will be at least 100(1 − α)% that a simple
random sample of size n contains the 100qth centile, Qq, of a
continuous distribution.14 For large q values (close to 1, such as the
95th percentile), the required minimum sample size can be estimated
as

α≈n qlog( )/log( ) (1)

The RSE method assumes a prespecified upper bound, R. For
simple random sampling with RSE ≤ R, the required minimum sample
size is

=
−

n
p

R p
1

2 (2)

Generally as a rule of thumb, RSE ≤ 10% corresponds to accurate
estimates; RSE ≈ 30% corresponds to moderately precise estimates;
and RSE ≥ 50% corresponds to estimates with minimal precision.

The skewness criterion method is based on the skewness parameter
γ of the binomial distribution:

γ =
−

−
p

np p

1 2

(1 ) (3)

It has been shown that the two-sided confidence intervals obtained
by the Woodruff method13 are expected to have reasonable coverage
provided that the binomial distribution associated with the centile does
not have excessive skew (i.e., γ ≤ 0.5) under simple random
sampling.15,16 Given the criterion γ ≤ 0.5, effective sample sizes n can
be estimated for a range of percentiles (Table 1).

The monitoring goal of the case study was to make inferences about
the 95th percentile of the atrazine concentration distribution with
moderate precision (RSE ≈ 30%) from finished drinking water
samples in each of the two sampling domains. Thus, the design
selected a target sample size of 212 observations for each domain
based in Table 1 and allocated proportionately to the strata within
each domain based on the equation:

Figure 2. Stratification for the atrazine monitoring case study of
community water systems (CWS) using groundwater as their sole
drinking water source.

Table 1. Smallest Effective Sample Size n Required to
Estimate Selected Percentiles in the Population Distribution

Tolerance Method

estimated percentile (100q)a

confidence level 100(1 − α) 90.0% 95.0% 99.0% 99.9%

80.0% 16 32 161 1,609
90.0% 22 45 230 2,302
95.0% 29 59 299 2,995
99.0% 44 90 459 4,603
99.9% 66 135 688 6,905

Relative Standard Error (RSE) Method

proportion of true population (p)b

upper bound RSE (R) 10.0% 5.0% 1.0% 0.1%

50% 37 77 397 3,997
40% 57 119 619 6,244
30% 101 212 1,101 11,101
20% 226 476 2,476 24,976
10% 901 1,901 9,901 99,901
Method Based on Binomial Distribution Skewnessc

estimated percentiles 100(1 − p)

skewness (γ) 90.0% 95.0% 99.0% 99.9%

<1/2 29 69 389 3,989
aTolerance method estimates the smallest effective sample size n for
which the probability of containing the 100qth centile, Qq, has
confidence level 100(1 − α). bThe relative standard error (RSE)
method estimates the smallest effective sample size n such that the
RSE of the estimate of a population proportion p will be no more than
a prespecified upper bound R. The qth percentile estimate, Qq, equals
100(1 − p). cThe method based on the skewness of the binomial
distribution does not explicitly specify the confidence intervals. As per
Boos and Hughes-Oliver15 and Brown et al.,16 two-sided confidence
intervals are expected to have reasonable coverage for small skewness
of the binomial distribution (i.e., γ ≤ 0.5).
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where nh is the number of samples for stratum h of domain d (d =
detect or nondetect); Nd is the total CWS number of domain d; Nd,t is
the target sample size for domain d; and Nh is the total CWS number
in stratum h of the detect or nondetect domain. Note that either nh or
Nh were not indexed per domains in eq 4 as we assigned distinct
stratum numbers for each of CWS domains in the computer analysis
process.
To ensure participation of at least 212 CWS in the monitoring for

each of the two domains, a larger target sample size of 314 CWS was
suggested for initial planning, assuming that at least 75% of the CWS
selected for the study would be eligible and agree to provide a water
sample, and at least 90% of those would be successfully analyzed. The
number of CWS for each stratum within each domain was allocated
proportionally and selected randomly so that the total number of
participants in each domain was close to the target sample size of 314
or at least 212 CWS. A comprehensive questionnaire was prepared to
identify CWS drinking water well characteristics including well
location, construction year, depth, capacity, casing, aquifer type
(confined or unconfined), influenced by surface water, distance from
crop field, past atrazine detection, etc. Each of the randomly selected
CWS was sent the questionnaire to determine CWS eligibility for the
study using the criteria described above. If a questionnaire response
was received from a CWS and it was subsequently determined as
qualified, the CWS was then asked to provide a finished water sample
for laboratory analysis.
Statistical Analysis Weights. Given the same target number of

samples, different sampling rates for each of the two CWS domains
resulted from the difference in domain size. For example, of the total
15 840 CWS, nondetect CWS were predominant with the domain size
consisting of 15 381 systems. Because of this, statistical analysis
weights were needed to produce design-unbiased estimates of overall
population parameters (e.g., numbers and proportions of wells with
detectable concentrations of the target analyte). Because of differential
rates of CWS eligibility and nonresponse (i.e., CWS who chose not to
participate in monitoring), statistical analysis weights needed to be
adjusted to reduce the potential for nonresponse bias. Initial sampling
weights were developed as a part of sample design activities. After data
collection, sampling weights were adjusted to compensate (at least
partially) for the potential bias resulting from survey nonresponse.
Procedures for weighting and weight adjustments are described below.
Sampling weights, or initial statistical analysis weights, w1, are

reciprocals of the probabilities of selection for CWS i to be sampled:

=w h i N n( , ) /h h1 (5)

where Nh and nh are defined in eq 4.
There are two types of nonresponse of a CWS to monitoring: (1) a

CWS may be sampled but its eligibility cannot be verified, and (2) a
verified eligible CWS may not provide water samples for analysis for
various reasons. For the first type, a weight adjustment factor is needed
to compensate for the unknown eligibility status of the CWS to reduce
bias. This is essentially two weight adjustments for nonresponse to
determine the eligibility of a CWS. Since each sampling stratum had a
sufficient number of respondents to be used as a weighting class
(except for several Kansas CWS with false positives in PLEX as
discussed later), two weight adjustments were made based on sampling
strata instead of using separate weighting classes. Hence, for the first
weight adjustment, a factor wf1 to compensate for nonresponse to the
determination of eligibility was computed as

=
∑

∑
=

=
wf h i

w h i

I h i w h i
( , )

( , )

( , ) ( , )
i
n

i
n

k
1

1 1

1 1

h

h
(6)

where

=
⎪

⎪

⎧⎨
⎩I h i

i
( , )

1, if the th CWS had known eligibility

0, and otherwisek
(7)

The adjusted weight w2 combining the initial weight w1 and
adjustment factor wf1 for the ith CWS in stratum h was then computed
as

=w h i w h i wf h i I h i( , ) ( , ) ( , ) ( , )2 1 1 E (8)

where

=
⎪

⎪

⎧⎨
⎩I h i

i
( , )

1, if the th CWS was eligible

0, otherwiseE
(9)

From eq 8, the sum of the adjusted weights, w2, estimates the number
of IE(h,i) eligible CWS in the weighting class (i.e., stratum) because it
is the estimated proportion of eligible CWS in the weighting class
multiplied by the total number of CWS on the stratum sampling
frame, i.e.,

∑ ∑=
∑
∑∈

=
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For the second nonresponse type, a similar weight adjustment factor,
wf 2, was computed to compensate for no water sampling of a selected
known eligible CWS:

=
∑

∑
=

=
wf h

w h i

I h i w h i
( )

( , )

( , ) ( , )
i
n

i
n2

1 2
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h

h (11)

where

=
⎪

⎪⎧⎨⎩I h i
i

( , )
1, if the th CWS was a participant

0, otherwiseR
(12)

The final statistical analysis weight, w3, for the i
th CWS in stratum h

was then computed as

=w h i w h i wf h I h i( , ) ( , ) ( ) ( , )3 2 2 R (13)

For each stratum (h), and hence, the population as a whole, the sum
of the final weights, w3, is the same as the sum of the unadjusted
weights, w2, even though the nonrespondents have a nonzero value of
w2 and a zero value for the final weight, w3. In this way, the
nonresponse adjustment reduces bias to the extent the non-
respondents are similar to respondents from the same stratum, i.e.,

∑ ∑=
= =

w h i w h i( , ) ( , )
i

n

i

n

1
3

1
2

h h

(14)

Data Analysis. Proper analysis of data collected for members of a
probability sample requires that all observations be weighted inversely
to their probabilities of selection as described above. Sampling weights
enable design-unbiased estimation of linear population parameters,
such as population totals. A common example requiring weighted data
analysis is estimation of a population proportion (or percentage), such
as the percent measurable (i.e., estimated proportion of population
units having detectable concentrations). To estimate a proportion Px,
the general form of the estimate is

=
∑
∑

̂P
w h i X

w h i
( , )

( , )
x

i3

3 (15)

where summations are over all sample units, w3(h,i) denotes the
analysis weight associated with CWS i in stratum h, and Xi is an
indicator variable with a value of 1 (or 100) if CWS i has the
characteristic of interest (e.g., has a detectable level) and with a value
of 0 otherwise. The numerator is an estimate of the total number of
CWS units in the population having the characteristic; the
denominator is an estimate of the total number of units in the
population.

A similar expression is used to estimate target population mean,
where Yi denotes a measured quantity for CWS i (e.g., a concentration
of atrazine):

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf4039869 | J. Agric. Food Chem. 2013, 61, 11771−1178111774



̅ =
∑
∑

Y
w h i Y
w h i
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( , )

i3
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The numerator estimates the total of the Y variable that would have
been obtained if all CWS of the target population had been observed
and measured; the denominator estimates total size of the target
population.
We also wanted to estimate proportions and means for individual

domains of the target CWS population, for example, percent
measurable and average concentration for the detect domain. For a
domain d, such a proportion is estimated as

=
∑
∑

̂P d
w h i I X
w h i I

( ) ( , )
( , )

x
d i

d

3

3 (17)

where Id = 1 if unit i is in the domain d, and Id = 0 otherwise.
Analogously, the domain means are estimated as

̅ =
∑
∑

Y d
w h i I Y
w h i I

( ) ( , )
( , )

d i

d

3

3 (18)

Note that if the Id values are identically 1 in eqs 17 and 18, then the
domain of interest is the entire target population.
Population precision and domain parameter estimates (e.g.,

proportions, means, and percentiles) are expressed in terms of their
variance or standard error. Estimating sampling variances and standard
errors for statistics calculated from probability sampling data is based
on the randomization distribution induced by the sampling design (i.e.,
they should account for all sampling design features, such as stratified
random sampling). Such an approach is robust because it makes no
assumptions regarding the distribution of occurrence (e.g., lognor-
mality) of the survey items. Hence, analyses based on the design-
induced distribution provide the most robust basis for making
inferences from the sample to the target population.
The classic approach to estimating standard errors for nonlinear

statistics, such as means and proportions, from complex probability
sampling designs is a first-order Taylor Series linearization method.
Alternative variance estimation techniques for such designs include
jackknifing and balanced repeated replication. We employed the first-
order Taylor Series method as implemented in the software Survey
Data Analysis (SUDAAN) to estimate standard errors.17 The
SUDAAN DESCRIPT procedure was used to estimate proportions,
means, geometric means, and percentiles. Approximate 95%
confidence intervals for parameter estimates were calculated. For
percentiles, confidence intervals were obtained directly by DESCRIPT.
For means, intervals were obtained as [estimated mean] ± 2 [its
estimated standard error] based on the assumption that estimates are
approximately normally distributed.
Case Study. After the monitoring design (sample stratification and

allocation) was completed and the CWS eligibility questionnaire and
participation agreement were received, sampling began in May 2000
and completed in October 2000. The historical SDWA monitoring
data (1993−1998) suggested that, where present, atrazine residues
were not highly temporally variable. Thus potential temporal
concentration fluctuations in finished drinking water at the tap of
each groundwater CWS was not expected to vary significantly. The
majority of CWS collected one single finished water sample in May,
June, July, August, September, or October 2000. Eighty-nine CWS
collected two finished water samples from different groundwater wells
used by the same CWS.
Sample collection, shipment, storage, and disposition were recorded

with a chain-of-custody form to track the process from the time of
sampling to the end of sample analysis and disposal. Water samples
were collected in two 1-L amber glass bottles as replicate A and B.
Samples were shipped from the CWS to the Syngenta analytical
laboratory with frozen blue ice packs in specially designed insulated
containers to ensure samples were maintained at ∼4 °C during the
Federal Express overnight or second-day shipment. Upon receipt, all
water samples were kept in a refrigerator maintained at ∼4 °C prior to
chemical analysis. The gas chromatography/mass selective detection

(GC/MSD) method developed by Yokley and Cheung18 was used to
determine atrazine concentrations (LOQ = 0.05 ppb).

■ RESULTS AND DISCUSSION
Sample Stratification. Potential stratification variables

were evaluated to determine which would be most predictive
of atrazine detections within the PLEX data set. This evaluation
was based on a subset of the 459 CWS with at least one
atrazine detection (1993−1998); the subset had 256 CWS with
an atrazine measurement in 1998 and at least one in prior years.
Evaluation results for the five potential stratification variables
are provided in Table 2.

The rate of occurrence of detectable atrazine concentrations
in 1998 was not strongly related to quartiles of the number of
persons served by CWS, varying from 53.1% to 59.4%. As
expected, this result indicates a low likelihood of predicting
atrazine detection based on the number of persons served by
CWS. However, the number of people served by CWS is an
important parameter for the population-based regulatory
aggregate dietary assessments that include drinking water as a
route of exposure.

Table 2. Potential Stratification Variables for 256 CWS with
at Least One Detectable Atrazine Concentration (1993−
1998) and a Measurement (Detect or Nondetect) in Both
1998 and Prior Years (1993−1997)

distribution of
CWS with
1998 data

distribution of
CWS with

1998
detections

potential strataa n % n %
percent with detectable

atrazine in 1998

persons served at CWS
[Q3, ∞)b 64 25.0 34 23.9 53.1
[Q2, Q3) 64 25.0 38 26.8 59.4
[Q1, Q2) 64 25.0 34 23.9 53.1
[0, Q1) 64 25.0 36 25.4 56.3

average atrazine use
intensity (95−97)

[Q3, ∞) 64 25.0 28 19.7 43.8
[Q2, Q3) 64 25.0 35 24.6 54.6
[Q1, Q2) 64 25.0 38 26.8 59.3
[0, Q1) 64 25.0 41 28.9 64.1

average of quarterly
maxima (93−97)

[Q3, ∞) 64 25.0 46 32.4 71.9
[Q2, Q3) 64 25.0 33 23.2 51.6
[0, Q2) 128 50.0 63 44.4 49.2

median of quarterly
maxima (93−97)

[Q3, ∞) 64 25.0 51 35.9 79.7
[0, Q3) 192 75.0 91 64.1 47.4

maximum concentration
(93−97)

[Q3, ∞) 65 25.4 37 26.1 56.9
[Q2, Q3) 63 24.6 35 24.6 55.6
[0, Q2) 128 50.0 70 49.3 54.7

detectable (93−97)
yes 219 85.5 105 73.9 47.9
no 37 14.5 37 26.1 100.0

aQ1 = first quartile; Q2 = second quartile or median; Q3 = third
quartile. b[x1, x2) = the interval: x1 ≤ x < x2.
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Quartiles of average atrazine use intensity derived from 1995
to 1997 county level data appeared inversely related to the rate
of occurrence of atrazine detections, varying from 43.8% for the
highest quartile of usage to 64.1% for the lowest (Table 2).
This may seem counterintuitive, but local and regional factors
including well depth, treatment, soil and groundwater travel
time, and hydrogeological characteristics can all complicate the
relationship between atrazine use and detection in ground-
water. Local groundwater recharge potential may not relate to

finished groundwater atrazine residues especially where the
CWS acquires water from confined aquifers.
Of all CWS in the highest quartile of the average quarterly

concentration maxima (1993−1997), 71.9% had detectable
atrazine levels in 1998. Conversely, ∼50% of the CWS in the
other three quartiles had detectable concentrations in 1998.
The first and second quartiles were combined for this analysis
because many CWS had nondetectable quarterly maximum.

Table 3. Potential Strata Based on Population Served and Historical Atrazine Concentration Data or Average Atrazine Use
Intensity for 256 CWS with at Least One Atrazine Detection from 1993 to 1998 and a Measurement (Detect or Nondetect) in
Both 1998 and Prior Years (1993−1997)

distribution
of CWS with
1998 data

distribution
of CWS with

1998
detections

stratum
number of persons

served
median of quarterly concentration maxima or average atrazine use

intensity n % n %
% detectable atrazine in

1998

Strata Based on Population Served and Historical Atrazine Concentration Data
1 first (highest) quartile top 25% in median of quarterly conc. maxima 16 6.3 12 8.5 75.0
2 first (highest) quartile remaining 75% in median of quarterly conc. maxima 48 18.8 22 15.5 45.8
3 second quartile top 25% in median of quarterly conc. maxima 16 6.3 14 9.9 87.5
4 second quartile remaining 75% in median of quarterly conc. maxima 48 18.8 24 16.9 50.0
5 third quartile top 25% in median of quarterly conc. maxima 16 6.3 13 9.2 81.3
6 third quartile remaining 75% in median of quarterly conc. maxima 48 18.8 21 14.8 43.8
7 fourth (lowest) quartile top 25% in median of quarterly conc. maxima 16 6.3 11 7.7 68.8
8 fourth (lowest) quartile remaining 75% in median of quarterly conc. maxima 48 18.8 25 17.6 52.1

Strata Based on Population Served and Average Atrazine Use Intensity
1 first (highest) quartile top 25% in average atrazine use intensity 16 6.3 7 4.9 43.8
2 first (highest) quartile remaining 75% in average atrazine use intensity 48 18.8 27 19.0 56.3
3 second quartile top 25% in average atrazine use intensity 16 6.3 9 6.3 56.3
4 second quartile remaining 75% in average atrazine use intensity 48 18.8 29 20.4 60.4
5 third quartile top 25% in average atrazine use intensity 16 6.3 7 4.9 43.8
6 third quartile remaining 75% in average atrazine use intensity 48 18.8 27 19.0 56.3
7 fourth (lowest) quartile top 25% in average atrazine use intensity 15 5.9 5 3.5 33.3
8 fourth (lowest) quartile remaining 75% in average atrazine use intensity 49 19.1 31 21.8 63.3

Table 4. Strata and Target Sample Allocation for the Detect Domain (459 CWS with at Least One Atrazine Detection) and the
Nondetect Domain (15 381 CWS with No Atrazine Detection) from 1993 through 1998 in the PLEX Database

proportionate
allocation

stratum
number of persons

served
median of quarterly concentration maxima or average atrazine use

intensity
total CWS on sampling frame

(Nh)
Nd,t =
212

Nd,t =
314

Detect Domain
11 first (highest) quartile top 25% in median of quarterly conc. maxima 28 13 19
12 first (highest) quartile remaining 75% in median of quarterly conc. maxima 86 40 59
13 second quartile top 25% in median of quarterly conc. maxima 28 13 19
14 second quartile remaining 75% in median of quarterly conc. maxima 86 40 59
15 third quartile top 25% in median of quarterly conc. maxima 28 13 19
16 third quartile remaining 75% in median of quarterly conc. maxima 86 40 59
17 fourth (lowest) quartile top 25% in median of quarterly conc. maxima 28 12 19
18 fourth (lowest) quartile remaining 75% in median of quarterly conc. maxima 89 41 61

Nondetect Domain
21 first (highest) quartile top 25% in average atrazine use intensity 943 13 19
22 first (highest) quartile remaining 75% in average atrazine use intensity 2,834 40 58
23 second quartile top 25% in average atrazine use intensity 957 13 19
24 second quartile remaining 75% in average atrazine use intensity 2,887 40 59
25 third quartile top 25% in average atrazine use intensity 949 13 19
26 third quartile remaining 75% in average atrazine use intensity 2,851 40 59
27 fourth (lowest) quartile top 25% in average atrazine use intensity 957 13 19
28 fourth (lowest) quartile remaining 75% in average atrazine use intensity 2,876 40 59
29 false positives in Kansas 127 2 3
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Using the median of quarterly maxima (1993−1997), 79.7%
of the CWS in the top quartile (25%) had a detectable
concentration in 1998. For the remaining quartiles (75%),
47.4% of the CWS had a detectable concentration. Hence, the
median of quarterly maxima seemed to be more predictive than
the average for atrazine detections.
CWS separation by the maximum concentration (1993−

1997) in terms of percent detectable atrazine measurements in
1998 varied only from 54.7% to 56.9% based on quartiles of this
metric (Table 2). Again, the lowest two quartiles were
combined due to the number of nondetectable samples in
the group. Overall detection rate was 85.5% for the 256 CWS
sampled in 1993−97; in 1998, the detection rate reduced to
55.5% (i.e., 142 out of 256 CWS with detectable atrazine
concentrations in 1998).
Only two of the five variables examined in detail were feasible

to stratify the nondetect domain of 15 381 CWS since there
were no atrazine detects to use − number of persons served
and average atrazine use intensity. Average atrazine use
intensity could potentially be related to future atrazine
detections (Table 2). Hence, both variables were used to
stratify the nondetect domain.
The median of the quarterly atrazine maxima (1993−1998)

was used as a useful stratification variable for the detect domian
(Table 2). Although the number of persons served by CWS has
low predictability for atrazine detection, it was selected as a
stratification variable because of its potential use in aggregate
dietary risk assessment for expressing exposure probability in
terms of proportions of population-served. Using quartiles of
the number of persons served as the first stratification variable,

we investigated the utility of using either the median of the
quarterly atrazine maxima or atrazine use intensity as a
secondary stratification variable (Table 3). Using persons
served as the second stratification variable after stratification by
atrazine use intensity or quarterly maxima was also evaluated
but was less effective (results not shown). Median of quarterly
maxima was more effective, resulting in large interstratum
heterogeneity in terms of percent wells with detections in 1998
(Table 3).
In summary, three stratification variables evaluated above

were used in the final design of the atrazine groundwater CWS
case study. Resulting frame counts (Nh) were given in Table 4
for each stratum in the detect (459 CWS) and nondetect (15
381 CWS) domains, respectively. An additional stratum was
added to the nondetect group for 127 CWS in Kansas when the
state determined that these CWS previously reported as having
a detection actually did not have an atrazine detection. These
127 CWS with false positives (1993−1998) were set aside as a
separate stratum in the nondetect domain.

Sample Size Requirement. Sample size results are
provided in Table 1 based on three methods: tolerance
interval, RSE, and skewness criterion.13 According to tolerance
interval, the smallest sample size of 59 is required to achieve
95% confidence such that the sample contains the 95th centile
value. This requirement is similar to the estimate by the
skewness criterion method which requires 69 samples.
However, the sample size requirement increases to 212 if the
goal is to estimate the 95th percentile with a predetermined
precision at 30% RSE. Sample size increases rapidly as the
target percentile, precision, or the confidence level increases.

Table 5. Comparison of Target and Actual Number of Participants by Sampling Strata of the Atrazine Groundwater Monitoring
Case Study

stratum population served
median of quarterly concentration maxima or average

atrazine use intensity
target number of
respondents

actual number of
respondents

percentage of target
achieved

Detect Domain
11 first (highest)

quartile
top 25% in median of quarterly conc. maxima 13 13 100.0

12 first (highest)
quartile

remaining 75% in median of quarterly conc. maxima 40 39 97.5

13 second quartile top 25% in median of quarterly conc. maxima 13 13 100.0
14 second quartile remaining 75% in median of quarterly conc. maxima 40 39 97.5
15 third quartile top 25% in median of quarterly conc. maxima 13 14 107.7
16 third quartile remaining 75% in median of quarterly conc. maxima 40 38 95.0
17 fourth (lowest)

quartile
top 25% in median of quarterly conc. maxima 12 12 100.0

18 fourth (lowest)
quartile

remaining 75% in median of quarterly conc. maxima 41 36 87.8

Subtotal for detect domain 212 204 96.2
Nondetect Domain

21 first (highest)
quartile

top 25% in average atrazine use intensity 13 15 115.4

22 first (highest)
quartile

remaining 75% in average atrazine use intensity 40 46 115.0

23 second quartile top 25% in average atrazine use intensity 13 18 138.5
24 second quartile remaining 75% in average atrazine use intensity 40 41 102.5
25 third quartile top 25% in average atrazine use intensity 13 13 100.0
26 third quartile remaining 75% in average atrazine use intensity 40 37 92.5
27 fourth (lowest)

quartile
top 25% in average atrazine use intensity 13 16 123.1

28 fourth (lowest)
quartile

remaining 75% in average atrazine use intensity 40 47 117.5

29 false positives in Kansas 2 2 100.0
Subtotal for nondetect domain 214 235 109.8

Total 426 439 103.1
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On the basis of these considerations, a sample size was
selected that was sufficiently large to yield ∼212 eligible,
participating CWS with water samples in each of the two
domains. No inflation of the sample size was necessary to
account for the survey design effect as a result of proportionally
allocating the sample to the strata within each domain. Hence,
the design should be at least as efficient as a simple random
sample.
On the basis of the RSE method, the sample size of 212

should achieve moderate precision or better (RSE ≤ 30%) for
95th percentile concentrations (Table 1). From the tolerance
interval method, this sample size should provide high
confidence levels (>99%) and that the actual 95th percentile
of the distribution will be observed for each domain. For the
skewness criterion approach, the 95th percentile or above can
be estimated from 212 measurements.
Sample Allocation. Sample allocation results are shown in

Table 4 for eight strata in each of the detect and nondetect
domains, respectively. To account for nonresponders, ineligible
CWS and CWS not providing an analyzable water sample, a
sample of 314 CWS were initially targeted from each domain to
ensure that the final number of participants would be close to
the goal of 212.
Actual number of participating CWS totaled 439 (204 from

the detect domain; 235 from the nondetect domain), and these
were distributed among 21 major atrazine use states (Figure 1).
Actual sample numbers were compared to target sample sizes
for each stratum in Table 5. The number of participants was
close to the target sample size, achieving ≥95% of the target for
all but two strata. Only one stratum in each of two CWS
domains achieved lower than 95% of the target sample size;
87.8% in the detect domain and 92.5% in the nondetect
domain. For the whole sample, 439 CWS participated in the
study, exceeding the target of 426. The high yield rate for all
strata (all >85% compared to the target sample size) ensures

the sufficiency of collected data for strong statistical inferences
regarding estimation of the 95th and other high percentiles of
the distribution of concentrations. Strong inference requires
that the eligibility and response status of each sample CWS be
documented and that water samples be successfully obtained
and analyzed for a high proportion of eligible CWS. Statistical
analysis weights that compensate for nonresponse from eligible
CWS should be used in the final analyses to reduce
nonresponse bias as described below.

CWS Response Rates. The response rates by strata to
determine CWS eligibility and water sampling participation are
summarized in Table 6. A random sample of CWS was selected
from each stratum within the PLEX database for determining
the response rates. The number of CWS was selected to be
large enough to produce the desired number of participating
CWS in each stratum based on the two target sample sizes
listed in Table 4. A total of 695 CWS were actually selected
randomly, and 674 of these facilities were determined to be
eligible based on criteria provided in the methods section.
Weighted and unweighted response rates for the eligibility

determination are provided in Table 6. Unweighted response
rates are proportions of responding vs sampled CWS. Weighted
response rates utilize sampling weights to estimate the
proportion of eligible CWS in the population. Weighted
response rate was 98.6% for the detect domain and 96.2% for
the nondetect domain. The weighted overall response rate was
96.3%. The weighted overall response rate is similar to the
response rate for the nondetect domain because the detect
domain was heavily oversampled.
Response rates for collection and analysis of water samples

and questionnaires among eligible CWS are also provided in
Table 6. Results were used to adjust the analysis weight due to
the second type of nonresponse (i.e., likelihood of an eligible
CWS not to supply a water sample). Water samples were
obtained and analyzed for 439 of 624 sample CWS that were

Table 6. Response Rates for Determining Eligibility, Water Sampling Participation, and the Overall Response Rates for the
Atrazine Groundwater Monitoring Case Study

eligibility determination water sampling overall response rate

stratum (h) unweighted response rate weighted response rate unweighted response rate weighted response rate unweighted weighted

Detect Domain
11 100.0 100.0 92.9 92.9 92.9 92.9
12 100.0 100.0 86.7 86.7 86.7 86.7
13 100.0 100.0 92.9 92.9 92.9 92.9
14 100.0 100.0 79.6 79.6 79.6 79.6
15 100.0 100.0 100.0 100.0 100.0 100.0
16 98.0 98.0 84.4 84.4 82.7 82.7
17 100.0 100.0 80.0 80.0 80.0 80.0
18 94.6 94.6 80.0 80.0 75.7 75.7
Subtotal 98.5 98.6 84.7 84.8 83.4 83.6

Nondetect Domain
21 87.5 87.5 79.0 79.0 69.1 69.1
22 100.0 100.0 59.7 59.7 59.7 59.7
23 93.3 93.3 64.3 64.3 60.0 60.0
24 100.0 100.0 69.5 69.5 69.5 69.5
25 95.0 95.0 68.4 68.4 65.0 65.0
26 97.2 97.2 56.1 56.1 54.5 54.5
27 96.9 96.9 51.6 51.6 50.0 50.0
28 91.5 91.5 58.0 58.0 53.1 53.1
29 100.0 100.0 66.7 67.3 66.7 67.3
Subtotal 96.0 96.2 61.4 62.1 58.9 59.7
Total 97.0 96.3 70.4 62.7 68.2 60.4
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known to be eligible. The unweighted overall response rate for
participation in the study sampling (among verified eligible
CWS) was 70.4% (84.7% for the detect domain, and 61.4% for
the nondetect domain). Accounting for differing sampling and
response rates for eligibility determination, the weighted
estimate of the population response rate for well water
sampling is 62.7% for the overall population (84.8% for the
detect domain, and 62.1% for the nondetect domain).
The overall study response rate is the product of the

response rates at the two stages of nonresponse discussed
above. Weighted and unweighted overall study response rates
are shown in Table 6. The unweighted response rate is 68.2%
for the overall population, 83.4% for detect domain, and 58.9%
for the nondetect domain. Correspondingly, the weighted
response rate is 60.4% for the overall population, 83.6% for
CWS in the detect domain, and 59.7% for CWS in the
nondetect domain.
Monitoring Results. A histogram of all measured atrazine

concentrations was plotted in Figure 3. The overall distribution

was skewed toward the nondetection or low end of the
measured values. Estimates of the target population distribu-
tions and their 95% confidence intervals of atrazine
concentrations using the analysis weight method described
above are presented in Table 7. Two approaches were used to
evaluate the impact of nondetect (ND) samples (i.e., <LOQ)
on statistical estimates. One approach was to replace all ND
records with 0.025 ppb, which is half of the LOQ (0.05 ppb).
The second approach was to use all instrument readings as low
as 0.01 ppb (instrument measurable limit, IML). Estimated
mean atrazine concentration for the overall population was
0.030 ppb (95% CI: 0.028, 0.033) by the 1/2 LOQ substitution
approach and 0.0097 ppb (95% CI: 0.0069, 0.013) by the IML
approach. For the detect domain, the estimated mean, 90th and
95th percentiles using the 1/2 LOQ approach were not
statistically different (confidence interval overlap) from the
corresponding values derived from the IML approach. The
90th and 95th percentile estimates were the same (0.36 and
0.51 ppb, respectively) for the 1/2 LOQ and IML methods. As
expected, the detect domain had a higher estimated mean and
other percentile values than the nondetect domain.
Corresponding estimates for historical PLEX data using the

maximum last quarter measurements between 1993 and 1998
were also provided in Table 7. The 50th, 90th, and 95th
percentile values were not estimated for the nondetect domain
and overall population (nor the 50th percentile of the detect
domain) due to large number of ND values. Estimated mean
for the nondetect domain and overall population was 0.00 and
0.0037 ppb, respectively, lower than the atrazine case study
results with either the 1/2 LOQ or IML approach. For the
detect domain of the PLEX data, estimated mean, 90th and
95th percentiles were 0.13, 0.28, and 0.44 ppb, respectively and
were not statistically different (confidence internal overlap)
from the corresponding estimates in the current case
monitoring study.
In the PLEX database (1993−1998), the overall percent

detectable rate for atrazine is 2.8%. The LOQs reported in the
PLEX database for this time period ranged from 0.1 to 3 ppb.
In the groundwater monitoring case study, 3.3% of the CWS
water samples showed detectable levels (LOQ = 0.05 ppb),
which was consistent with the PLEX data. However, percent
detectable increased to 14% if the IML (0.01 ppb) was used for

Figure 3. Measured atrazine concentrations (ppb) in finished
groundwater samples from the atrazine monitoring case study of
community water systems (CWS) using groundwater as their sole
drinking water source. aND = Nondetection (<0.05 ppb LOQ). bOne
detection of a nondrinking water well sample

Table 7. Statistical Estimates of Atrazine Concentration Distributions (95% Confidence Intervals) from the Groundwater
Monitoring Case Study and Comparison with the Corresponding Results of the SDWA Maximum Last Quarter Data in PLEX
(1993−1998)

atrazine groundwater CWS Monitoring, 2000

percentile mean (ppb) 50th (ppb) 90th (ppb) 95th (ppb)

Using Half of the Laboratory Limit of Quantification (0.05 ppb) at 0.025 ppb
detect domain 0.17 (0.091, 0.24) NEa 0.36 (0.27, 0.46) 0.51 (0.40, 0.71)
nondetect domain 0.026 (0.025, 0.028) NE NE NE
overall population 0.030 (0.028, 0.033) NE NE NE

Using Lowest Analytical Instrument Cutoff at 0.01 ppb (μg/L)
detect domain 0.16 (0.085, 0.23) 0.049 (0.034, 0.076) 0.36 (0.27, 0.46) 0.51 (0.39, 0.69)
nondetect domain 0.0053 (0.0035, 0.0072) 0.0021 (0.0020, 0.0023) 0.0089 (0.0057, 0.013) 0.015 (0.011, 0.043)
overall population 0.0097 (0.0069, 0.013) 0.0022 (0.0020, 0.0024) 0.0096 (0.0068, 0.015) 0.024 (0.013, 0.25)

1993−1998 PLEX (Maximum Last Qtr. Measurement)
detect domain 0.13 (0.089, 0.18) NE 0.28 (0.23, 0.37) 0.44 (0.30, 0.93)
nondetect domain 0.00 (0.00, 0.00) NE NE NE
overall population 0.0037 (0.0025, 0.0049) NE NE NE

aNE = Not able to estimate.
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detect/nondetect determination. As expected, decreasing
LOQs significantly increases the percent detectable rate.
The methodology underlying the design of the atrazine

groundwater monitoring study is that of a probability-based
sample survey, which is commonly used in social science
research.19 However, these same principles are applicable to
other scientific disciplines for statistical inference regarding a
population based on observing and measuring the members of
a sample selected from that population.20 An early application
of these methods to environmental science research was the
U.S. EPA “total exposure assessment methodology (TEAM”)
studies,21 which sampled people residing in specific cities or
counties to measure their exposures to volatile organic
compounds. In the 1990s, the EPA decided to extend these
studies to multiple sources and routes of exposure in EPA
Region 5, six states in the Midwest area of the United States.
The survey sampling issues that had to be considered when
designing such studies were addressed by Callahan et al.22

These principles were then applied to selection of individuals
throughout EPA Region 5 for a field test for the National
Human Exposure Assessment Survey.23 These same principles
have also been applied to surveys of drinking water wells24 and
industrial surface water impoundments.25 These surveys are
relatively straightforward applications of probability-based
sampling in which the population is a countable set of “units”
(people, wells, or industrial establishments). However,
probability-based sampling methods also have been applied to
environmental surveys of continuous spatial populations, such
as the lakes, rivers, forests, and estuaries that comprise the
EPA’s Environmental Monitoring and Assessment Program
(EMAP).26,27 The probability-based survey sampling methods
applied in the atrazine groundwater CWS study are statistically
robust for making inferences regarding any well-defined
population.28

In conclusion, the design and data analysis of the atrazine
groundwater monitoring program by a survey sampling
approach were described to characterize the distribution of
concentrations in 15 840 groundwater CWS in 21 major
atrazine use states. Methods for determining each design
element were provided and discussed for sample stratification,
sample size and allocation, analysis weight determination, and
weighted population estimates. Three factors were found to
best stratify samples for the atrazine case study: atrazine use,
number of persons served by the CWS, and historical (1993−
1998) atrazine detection rate. For the case study, only 3.3% of
the finished groundwater samples contained detectable residues
of atrazine (LOQ = 0.05 ppb). Means and percentiles were
estimated for two scenarios of treating nondetection samples:
(1) substituting nondetection with 1/2 LOQ and (2) including
all instrument readings including values below LOQ as long as
detectable by the analytical instrument. The 1/2 LOQ
substitutions affected percentile estimates for the overall
population of CWS and the nondetect domain. However, little
effect was observed on higher centile estimates (>90th centile)
of the detect domain. Including all instrument readings in the
data analysis, median and 95th percentile estimates (95%
confidence intervals) were 0.0022 ppb (0.0020, 0.0024) and
0.024 ppb (0.013, 0.25) for the overall population of CWS,
respectively. For the detect domain, the median and 95th
percentile estimates were 0.049 ppb (0.034, 0.076) and 0.51
ppb (0.39, 0.69), respectively. Corresponding estimates for the
nondetect domain were lower than the overall population and
the detect domain. Estimates of the mean, 90th and 95th

percentile values for this study were in good agreement with
corresponding results from the historic atrazine data of the
SDWA monitoring programs, suggesting that the study design
was adequate and effective to address previously stated study
objectives. The robustness of this sampling approach should
provide improved monitoring efficiency that can result in
significant cost savings for similar regional and national
monitoring programs. The elements of this sampling approach
are applicable to the design of other environmental monitoring
efforts aimed at probability-based exposure determination with
statistical confidence and model validation.
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